In this paper, we discuss how a suitable family of tensor kernels can be used to efficiently solve nonparametric extensions of l(p) regularized learning methods. Our main contribution is proposing a fast dual algorithm, and showing that it allows to solve the problem efficiently. Our results contrast recent findings suggesting kernel methods cannot be extended beyond Hilbert setting. Numerical experiments confirm the effectiveness of the method.

Solving l(p)-norm regularization with tensor kernels / Salzo, S; Suykens, Jak; Rosasco, L. - 84:(2018). (Intervento presentato al convegno 21st International Conference on Artificial Intelligence and Statistics (AISTATS) tenutosi a Lanzarote, SPAIN).

Solving l(p)-norm regularization with tensor kernels

Salzo S;
2018

Abstract

In this paper, we discuss how a suitable family of tensor kernels can be used to efficiently solve nonparametric extensions of l(p) regularized learning methods. Our main contribution is proposing a fast dual algorithm, and showing that it allows to solve the problem efficiently. Our results contrast recent findings suggesting kernel methods cannot be extended beyond Hilbert setting. Numerical experiments confirm the effectiveness of the method.
2018
21st International Conference on Artificial Intelligence and Statistics (AISTATS)
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Solving l(p)-norm regularization with tensor kernels / Salzo, S; Suykens, Jak; Rosasco, L. - 84:(2018). (Intervento presentato al convegno 21st International Conference on Artificial Intelligence and Statistics (AISTATS) tenutosi a Lanzarote, SPAIN).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1654513
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact